
Chris Street
Solved Putnam Exam practice problems

Problem, 1932 A-2. Determine all polynomials P (x) such that P (x2 + 1) =
(P (x))2 + 1 and P (0) = 0.

Solution. The only such polynomial is x, the identity polynomial.
Proof. Let P (x) be such a polynomial.
Define the inductive sequence i0 = 0, in = i2n−1 + 1. We make two obser-

vations about this sequence - first, that it is strictly increasing and therefore
the ik’s are distinct. Secondly, for all j, P (ij) = ij . This is easily shown by
a basic induction: P (i0) = P (0) = 0, by hypothesis, and if P (im) = im, then
P (im+1) = P (i2m + 1) = P (im)2 + 1 = i2m + 1 = im+1.

Now, consider the polynomial Q(x) = P (x)−x. Let n = deg Q(x). Suppose
n ≥ 1. Then i0, i1 · · · in are (n+1) distinct zeros of Q(x). This is a contradiction
of the fundamental theorem of algebra.

Thus n = 0, and Q(x) is a constant polynomial. Since we know Q(0) =
P (0) − 0 = 0, it follows that Q(x) is the polynomial identically equal to zero,
and the claim is established. �

Problem, 1977 A-4. For 0 < x < 1, express

∞∑
n=0

x2n

1− x2n+1

as a rational function of x.
Solution. It is f(x) = x

1−x .
Proof. We desire to find

lim
k→∞

Sk

where

Sk =
k∑

n=0

x2n

1− x2n+1

First, I desire to show that this sequence S converges. This is easily seen by the
fact that, for 0 < x < 1,

Sk =
k∑

n=0

x2n

1− x2n+1 ≤
2k∑

n=1

xn

1− x2n
≤

2k∑
n=1

xn

1− x
=

1
1− x

2k∑
n=1

xn =
1− x2k+1

(1− x)2
− 1

1− x
.

and the fact that Sk is strictly increasing for 0 < x < 1. Now that I know that
S converges, then I know that the subsequence Tm = S2m+1 also converges and
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to the same limit. I write

Tm =
m∑

n=0

x22n

1− x22n+1 +
x22n+1

1− x22n+2

=
m∑

n=0

xK

1− x2K
+

x2K

1− x4K
,where K = 22n

=
m∑

n=0

xK(1 + x2K) + x2K

1− x4K

=
m∑

n=0

xK + x2K + x3K

1− x4K

=
m∑

n=0

1 + xK + x2K + x3K − 1
(1 + xK + x2K + x3K)(1− xK)

=
m∑

n=0

1
1− xK

− 1
1− x4K

.

Substituting back K = 22n, we have

Tm =
m∑

n=0

1
1− x22n − 1

1− x22n+2 .

From this, we see that we have a telescoping sum, and thus

Tm =
1

1− x
− 1

1− x22m+2 .

Taking the limit as m → ∞, we see that the second term goes to 1 (since
0 < x < 1), and thus we have

lim
m→∞

Tm = lim
k→∞

Sk =
1

1− x
− 1 =

x

1− x
.

�

Problem, B-1 1977. Evaluate the infinite product

∞∏
n=2

n3 − 1
n3 + 1

.

Solution. Write

Pm =
m∏

n=2

n3 − 1
n3 + 1

=
m∏

n=2

(n− 1)(n2 + n + 1)
(n + 1)(n2 − n + 1)

.

We desire limm→∞ Pm.
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Now we are going to write the k’th term in the product as

akbk

ckdk
, where

ak = k − 1, bk = k2 + k + 1, ck = k + 1, dk = k2 − k + 1.

Notice that ak = ck−2 and dk = bk−1. Thus

Pm =
m∏

n=2

n3 − 1
n3 + 1

=
a2b2

c2d2

a3b3

c3d3

a4b4

c4d4
· · · am−2bm−2

cm−2dm−2

am−1bm−1

cm−1dm−1

ambm

cmdm

=
a2b2

c2d2

a3b3

c3b2

c2b4

c4b3
· · · cm−4bm−2

cm−2bm−3

cm−3bm−1

cm−1bm−2

cm−2bm

cmbm−1

=
a2a3bm

d2cm−1cm

=
2
3

m2 + m + 1
m2 + m

Therefore limm→∞ Pm = limm→∞
2
3

m2+m+1
m2+m = 2

3 . �

Problem, B-5 1968. Let p be a prime number. Let Jp be the set of all 2× 2

matrices
(

a b
c d

)
whose entries are chosen from the set {0, 1, 2, · · · , p − 1}

and which satisfy the conditions a + d ≡ 1 mod p and ad − bc ≡ 0 mod p.
Determine how many members Jp has.

Solution. I do my work in the field Zp, of integers mod p. We desire to

count all matrices
(

a b
c d

)
, a, b, c, d ∈ Zp, a + d = 1, ad = bc.

We fix a. This forces d = 1−a. Our second equation becomes a(a− 1) = bc.
Now, how many solutions does this equation have?

If a(a− 1) = 0, then either a = 0 or a = 1. In either case, the solutions are
b = 0 or c = 0, which yields 2p− 1 solutions.

If a(a−1) 6= 0, then bc = m with m 6= 0. Since Zp is cyclic under + of order
p, ∀c 6= 0 ∈ Zp ∃ exactly one b ∈ Zp s.t. bc = m. This gives a total of p − 1
solutions.

Thus, all in all, there are 2(2p− 1) + (p− 2)(p− 1) = p2 + p solutions, and
so |Jp| = p2 + p. �

Problem, A-1 1965. At a party, assume that no boy dances with every girl
but each girl dances with at least one boy. Prove that there are two couples gb
and g′b′ which dance, whereas b does not dance with g′ nor does g dance with
b′.

Solution. Let b be the boy that dances with the maximal number of girls.
(We are here assuming a finite dance floor.) Let g′ be a girl that does not dance
with b. Let b′ be a boy that g′ does dance with.
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Now, there exists a girl g that does dance with b, but does not dance with
b′. For if not, b′ dances with at least one more girl than b does, a contradiction
to our assumption.

Now we have found the b, g, b′, g′ that solve the problem. �

Problem, A-1 1983. How many positive integers n are there such that n is
an exact divisor of at least one of the numbers 1040, 2030?

Solution. Call A the set of positive divisors of 1040, and B the set of positive
divisors of 2030.

1040 = 240540, so all divisors have the form 2i5j , with i and j running
independently from 0 to 40. Thus |A| = 41× 41 = 1, 681.

2030 = 260530, and again all divisors have the form 2i5j , with i from 0 to 61
and j from 0 to 31. Thus |B| = 61× 31 = 1, 891.

Now, to determine |A
⋂

B|, we look at the divisors of gcd(1040, 2030) =
240530. This has 41× 31 = 1, 271 divisors, thus |A

⋂
B| = 1, 271.

So the desired quantity, |A
⋃

B|, is |A| + |B| − |A
⋂

B| = 1, 681 + 1, 891 −
1, 271 = 2, 301. �

Problem, A-3 1967. Consider polynomial forms ax2 + bx + c with integer
coefficients which have two distinct zeros in the open interval 0 < x < 1. Exhibit
with a proof the least positive integer value of a for which such a polynomial
exists.

Solution. What we want is

0 < −b +
√

b2 − 4ac < 2a, 0 < −b−
√

b2 − 4ac < 2a.

Manipulating the inequalities gives

−2a <2
√

b2 − 4ac < 2a

−a <
√

b2 − 4ac < a

0 <
√

b2 − 4ac < a

0 <b2 − 4ac < a2.

Also we want
−b +

√
b2 − 4ac

2a
6= 1,

thus
b2 − 4ac 6= (2a + b)2.

We make note that we desire c 6= 0 to guarantee no root at 0.
We write ax2 + bx+ c = ax2−a(r1 +r2)x+ c, where r1, r2 are our roots. We

have 0 < r1 + r2 < 2. Also r1 + r2 is rational (it is −b
2a .) Thus say r1 + r2 = p

q ,

a fraction in lowest terms. b is an integer, so q|ap, thus q|a since (p, q) = 1.
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Reiterating, we have formulated the following constraints on the problem:

0 <a2

(
p

q

)2

− 4ac < a2,

a2

(
p

q

)2

− 4ac 6= (2a− a
p

q
)2,

(p, q) = 1, 0 <
p

q
< 2, q|a, c 6= 0.

where I have back-substituted b = −ap
q into our previous inequalities.

This greatly limits the number of possibilites for (a, q, p) solution triples. For
a from 1 to 4, the possibilities are (1, 1, 1), (2, 1, 1), (2, 2, 1), (2, 2, 3), (3, 1, 1),
(3, 3, 1), (3, 3, 2), (3, 3, 4), (3, 3, 5), (4, 1, 1), (4, 2, 1), (4, 2, 3), (4, 4, 1), (4, 4, 3),
(4, 4, 5), (4, 4, 7). We can limit these further since if (a, q, p) does not satisfy the
conditions, then (b, q, p), b > a will not either. But none of the cases satisfy all
of the constraints.

However, when a = 5, the polynomial 5x2−5x+1 has roots ( 1
2 ±

√
5

10 ), which
are both in (0, 1). Hence 5 is the smallest such a that works. �

Problem, B-2 1965. Suppose n players play a round-robin tournament (ie,
every player plays every other player exactly once.) Each game results in a win
or loss for a player: there are no ties. Let wk be the number of wins by player
k, and let lk be the number of losses by player k. Show that

n∑
i=1

w2
i =

n∑
i=1

l2i

Proof. Let G be the total number of games played (this number is
(

n
2

)
,

of course, but that is not important here.) The number of games played by each
player is (n− 1), so we can write that, for all i, wi = (n− 1)− li. Then we have

n∑
i=1

w2
i =

n∑
i=1

wi((n− 1)− li)

= (n− 1)
n∑

i=1

wi −
n∑

i=1

wili

= (n− 1)G−
n∑

i=1

wili

= (n− 1)
n∑

i=1

li −
n∑

i=1

liwi

=
n∑

i=1

li((n− 1)− wi) =
n∑

i=1

l2i .
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Problem, B-4 1967. We have a hallway with n lockers, labeled 1 through
n. The lockers have two possible states, open and closed. Initially they are all
closed. The first kid walking down the hallway flips every locker to the opposite
state (that is, he opens them all). The 2nd kid flips the locker door 2 and every
other locker door after that. The kth kid flips the state of every kth locker
door. After infinitely many kids have done this, which locker doors are closed
and which are open?

Solution. Take locker number n. It began closed, and will be flipped σ(n)
times, where σ(n) is the number of positive integer divisors of n. It will finish
up closed if and only if σ(n) is an even number, and will finish up open if and
only if σ(n) is odd.

Suppose n has the prime factorization pi1
1 pi2

2 · · · pik

k , the pm’s prime. Then

σ(n) =
k∏

m=1

(im + 1).

Notice that σ(n) is odd if and only if each of the im’s is even. Thus, σ(n) is odd
if and only if n is a perfect square. Therefore, the open lockers will be exactly
those whose number is a perfect square: that is, the 1st, 4th, 9th, etc. All other
doors will be closed. �

Alternative proof of fact used above. (Without using unique factorization)
The divisors of n come in pairs: that is, if p is an integer divisor of n, then n/p
is an integer divisor of n. Hence, the number of divisors for a given n will be
even unless for some divisor p, p = n/p - which is to say, n = p2. �

Problem, A-1 1977. Consider all lines that meet the graph of

y = 2x4 + 7x3 + 3x− 5

in four distinct points, say (xi, yi), i = 1, 2, 3, 4. Show that

x1 + x2 + x3 + x4

4

is independent of the line, and find its value.
Solution. Remember that a polynomial with real coefficients may be

written as

cnxn + cn−1x
n−1 + · · ·+ c1x + c0 = cn(x− r1)(x− r2) · · · (x− rn−1)(x− rn),

where r1, r2, · · · rn are the roots of the polynomial in C, with multiplicities.
Multiplying out and equating coefficients gives us the useful identity

cn−1 = cn(−r1 − r2 − · · · − rn−1 − rn).

To apply this fact to our problem, let’s call the line which intersects the poly-
nomial in question L(x) = mx + b (we know it has a finite slope m, since no
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vertical line will meet the function in more than one place.) Now notice that
x1, x2, x3, x4 are roots of the polynomial y−L(x) = 2x4 +7x3 +(3−m)x−5−b.
Since this polynomial is of degree 4, and each of x1 · · ·x4 are distinct, these are
all of the roots.

Thus, we have
7 = 2(−x1 − x2 − x3 − x4)

which gives that
x1 + x2 + x3 + x4

4
= −7

8
.

Notice that this value is entirely independent of the values of m or b. �

Problem, A-1 1978. Let A be any set of 20 distinct integers chosen from
the arithmetic progression 1, 4, 7, · · · , 100. Prove that there must be two distinct
integers in A whose sum is 104.

Solution. Consider the disjoint sets A1 = {1}, A2 = {52}, A3 = {4, 100}, A4 =
{7, 97}, A5 = {10, 94}, · · · , A17 = {46, 58}, A18 = {49, 55}. The union of these
sets gives you the complete geometric progression. Also notice that the sum of
the elements in each of A3, A4 · · ·A18 is 104.

At most 2 elements of A can be chosen from the sets A1 and A2. Hence
at least 18 are chosen from the 16 different sets A3, A4 · · ·A18. Then there is a
set Aj , j ≥ 3, such that both elements of Aj are chosen. (Indeed, there are at
least two such sets, but we only need one.) But these two elements add to 104. �

Problem, A-2 1988. A not uncommon calculus mistake is to believe that
the product rule for derivatives says that (fg)′ = f ′g′. If f(x) = ex2

, determine,
with proof, whether there exists an open interval (a, b) and a non-zero function
g defined on (a, b) such that the wrong product rule is true for x in (a, b).

Solution. Let g(x) = ex(2x − 1)1/2, differentiable on the open interval
( 1
2 ,∞). Now

f(x) = ex2

g(x) = ex(2x− 1)1/2

f ′(x) = 2xex2

g′(x) = ex(2x− 1)−1/2 + ex(2x− 1)1/2

and

(f(x)g(x))′ = ex2
(ex(2x− 1)−1/2 + ex(2x− 1)1/2) + 2xex2

ex(2x− 1)1/2

= ex2
ex(2x− 1)−1/2 − (1− 2x)ex2

ex(2x− 1)−1/2 + 2xex2
ex(2x− 1)1/2

= 2xex2
ex(2x− 1)−1/2 + 2xex2

ex(2x− 1)1/2.
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This is equal to

f ′(x)g′(x) = 2xex2
(ex(2x− 1)−1/2 + ex(2x− 1)1/2)

= 2xex2
ex(2x− 1)−1/2 + 2xex2

ex(2x− 1)1/2

Hence we have found a g(x) that satisfies the requirements, and we are done. �
The sketch work. The answer was of course not pulled out of ether, but

this work was done on scratch paper to determine the correct answer.
What we want is

[ex2
g(x)]′ = [ex2

]′g′(x),

or

2xex2
g(x) + ex2

g′(x) = 2xex2
g′(x)

2xex2
g(x) + ex2

g′(x)− 2xex2
g′(x) = 0

ex2
(2xg(x) + (1− 2x)g′(x)) = 0

Since ex2
is always positive for real x, this equation is only true if

2xg(x) + (1− 2x)g′(x) = 0.

Solving for g′(x) yields

g′(x) =
(

1 +
1

2x− 1

)
g(x).

This is a simple differential equation; notice that if G(x) is an antiderivative of(
1 + 1

2x−1

)
, then a solution is

g(x) = eG(X).

An antiderivative of
(
1 + 1

2x−1

)
is x + 1

2 log(2x− 1). Thus a solution is

g(x) = ex+ 1
2 log(2x+1) = ex(2x− 1)1/2.

Now we are ready to pull this function out of our hat to solve the problem! �

Problem, A-2, 1987. The sequence

{1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, · · · }

is obtained by writing the positive integers in order. If the 10n’th digit in this
sequence occurs in the part of the sequence in which the m-digit numbers are
placed, define f(n) to be m. For example f(2) = 2 because the 100th digit
enters the sequence in the placement of the two-digit integer 55. Find, with
proof, f(1987).
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Solution. I will define the function g(n) as follows: g(n) gives the number
of elements in the sequence after the number n has been placed in the sequence.
For example, g(1) = 1, g(9) = 9, g(10) = 11, g(101) = 195.

To find a formula for g(n) and to solve the problem, we will write, instead
of g(n), g(10k + l), where 10k is the largest power of 10 less than or equal to n,
and l is n− 10k. Then, if k satisfies g(10k + l) = 101987, then f(1987) = k + 1.

To write a closed form expression for g(10k + l), we notice that 10k + l of
the numbers from 1 to 10k + l have at least 1 digit. 10k + l− 9 of the numbers
from 1 to 10k + 1 have at least 2 digits. 10k + l − 99 of the numbers from 1 to
10k + 1 have at least 3 digits, and so on. Thus an expression for g(10k + 1) is

g(10k + l) = (k + 1)l +
k∑

i=0

(10k − 10i + 1)

which, evaluating the geometric sum and simplifying, gives

g(10k + l) =
9(k + 1)10k − 10k+1 + 1

9
+ (k + 1)(l + 1).

Now we solve

101987 =
9(k + 1)10k − 10k+1 + 1

9
+ (k + 1)(l + 1)

101987 = (k + 1)10k + (k + 1)(l + 1) +
1− 10k

9

Now set k = 1983. This gives on the right side

1.984× 101986 + 1984(l + 1) +
1
9
− 10

9
× 101982

Setting this equal to 101987, we find that

8.016× 101986 +
10
9

101982 − 1
9

= 1984(l + 1).

Now we see that 1984(l + 1) has to equal approximately 8.016× 101986 to make
the equation true. Since l may range from 0 to 9× 101986− 1, we see that l can
be chosen appropriately. Thus k = 1983, and f(1987) = 1984. �

Problem, A-5 1988. Prove that there exists a unique function from the set
R+ of positive real numbers to R+ such that

f(f(x)) = 6x− f(x)

and f(x) > 0 for all x > 0.
Solution. First, notice that f(x) = 2x is a solution: certainly 2x > 0 for

x > 0, and f(f(x)) = 4x = 6x− 2x = 6x− f(x).
Now we must prove that no other function works.
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So suppose that another function, g(x), satisfies these conditions. Suppose
that, at x = k, g(k) = 2k + c. Now, what is g(n)(k), where g(n) is the func-
tion iterated n times (ie, g(1)(k) = g(k), g(2)(k) = g(g(k)), etc.)? I claim that
g(n)(k) = ank + bnc, where an and bn are sequences defined by

a0 = 1,a1 = 2
b0 = 0,b1 = 1

an = 6an−2 − an−1,b2 = 6bn−2 − bn−1, for n ≥ 2

This is easily proved by an induction using the formula g(n) = 6g(n−2)− g(n−1).
Similarly, it is easy to show that ai = 2i for all i. Now, for all odd n ≥ 1, bn > 0,
and for all even n ≥ 2, bn < 0. To show this, note that b1 = 1, b2 = −1.
Now suppose that this holds for bm, bm+1,m some odd number greater than
1. Then, bm+2 = 6bm − bm+1 - a positive minus a negative, which is positive.
Similarly, bm+3 = 6bm+1 − bm+2 - a negative minus a positive. Thus, the result
is established.

Along with this, note that |bn| > 6|bn−2|. Since b1 = 1 and b2 = −1,
b2m+1 > 6m and b2m+2 < −(6m). Thus

lim
n→∞

−an

bn
= lim

n→∞
−
(

2√
6

)n

= 0.

Now, since ank + bnc > 0, we have c > (−an)/bnk for bn positive, and c <
(−an)/bnk for bn negative. We have seen that (−an)/bn → 0 as n → ∞, thus
c is bounded above by a sequence whose limit is 0, and bounded below by a
sequence whose limit is zero, and so must equal 0 itself. Thus g(x) = f(x), and
this proves the uniqueness of the solution. �

Problem, B-2 1966. Prove that among any ten consecutive integers at least
one is relatively prime to each of the others.

Solution. Call the numbers n, n + 1, n + 2, · · · , n + 9. Suppose that the
statement is not true: that is, for every n+ i, 0 ≤ i ≤ 9, there exists a n+ j, 0 ≤
j ≤ 9, such that (n + i, n + j) 6= 1 and i 6= j.

Then n+i and n+j share a common prime divisor, p. Let n+i = pm1, n+j =
pm2. Then |(n + i) − (n + j)| = |i − j| = |p(m1 −m2)|. Since |i − j| ≤ 9, p is
one of 2, 3, 5, or 7.

Therefore, it follows that every element of {n, n + 1, · · · , n + 9} is divisible
by at least one of 2, 3, 5, or 7.

Let Ma be the subset of {n, n + 1, · · · , n + 9} containing all the members
divisible by a.

Then |M2| ≤ 5, |M3| ≤ 4, |M5| ≤ 2, |M7| ≤ 2.
Notice that |M6| ≥ 1, and that if |M3| = 4, then |M6| = 2. (2 of the 4

divisors of 3 must be even.) Thus |M3| − |M6| ≤ 2.
Also, if |M5| = 2, then |M10| = 1 (one of the divisors of 5 is even.) Thus

|M5| − |M10| ≤ 1.
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Similarly, if |M7| = 2, then |M14| = 1. Thus |M7| − |M14| ≤ 1.
Now this gives

|M2 ∪M3 ∪M5 ∪M7| ≤ |M2|+ (|M3| − |M6|) + (|M5| − |M10|) + (|M7| − |M14|).

But the quantity on the left is 10, and the quantity on the right is ≤ 5+2+1+1 =
9, thus we have a contradiction 10 ≤ 9. Therefore, it must be that for some n+ i
no such j exists, and thus this n + i is relatively prime to every other element
of the set. �

Problem, B-4 1960. Consider the arithmetic progression a, a+d, a+2d · · · ,
where a and d are positive integers. For any positive integer k, prove that the
progression has either no exact kth powers, or infinitely many.

Solution. It suffices to prove that, if one kth power is in the progression,
there exists a larger kth power in the progression.

Thus, suppose that jk = a + id for some positive integers j, i. We will show
that there exists an integer b > 0 and an integer m > 0 such that (j + b)k =
a + id + md.

Write

(j + b)k =
k∑

q=0

(
k
q

)
jqbk−q

= jk +
k−1∑
q=0

(
k
q

)
jqbk−q

= a + id +
k−1∑
q=0

(
k
q

)
jqbk−q

= a + id + b
k−1∑
q=0

(
k
q

)
jqbk−q−1

Now notice that if we set b = d, then we have

(j + d)k = a + id + md

with m =
∑k−1

q=0

(
k
q

)
jqdk−q−1, the sum of positive integers and therefore a

positive integer itself, and we are done. �

Problem, A-1 1961. The graph of the equation xy = yx in the first quadrant
(i.e., the region where x > 0 and y > 0) consists of a straight line and a curve.
Find the coordinates of the intersection point of the line and the curve.

Solution. Let y = cx, c > 0. Then we desire to find pairs (x, c) that satisfy

xcx = (cx)x.
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These quantities are positive, so we can take logarithms. We write:

xcx = (cx)x

cx log x = x log(cx)
cx log x = x(log x + log c)

x(log x + log c− c log x) = 0.

Since x > 0, this is true iff

log x + log c− c log x = 0
(1− c) log x = − log c.

Notice that if c = 1, the above equation becomes vacuous. This only says that
c = 1 is a solution for any x, or equivalently an (x, y) pair satisfying x = y is a
(trivial) solution to the problem. Here is our straight line set of solutions.

To continue, we suppose that c 6= 1. Then it is proper to divide by (c− 1):

log x =
log c

c− 1
, c 6= 1.

This is the equation of the solution curve, giving x in terms of c. By dividing
by (c − 1), we eliminated the solution line and created a singular point at the
intersection point. So now we want to find what the limiting value of x is as
this curve approaches the c = 1 solution line. Hence we find

lim
c→1

log c

c− 1
= 1

by L’Hospital’s rule. Thus, at the intersection point, log x = 1, or x = e. Since
this point is on the line y = x, y = e also, and so the intersection point is (e, e). �

Problem, A-2 2001. You have coins C1, C2, · · · , Cn. For each k, coin Ck is
biased so that, when tossed, it has probability 1

2k+1 of falling heads. If the
n coins are tossed, what is the probability that the number of heads is odd?
Express the answer as a rational function of n.

Solution. Define On to be the probability that the number of heads for n
coins is odd, and En the probability that the number of heads is even. Then we
have the relations

On + En = 1, for all n

On =
1

2n + 1
En−1 +

2n

2n + 1
On−1, for n ≥ 2.

Rewriting the second equation using the first, we obtain

On =
1

2n + 1
(1−On−1) +

2n

2n + 1
On−1

On =
1

2n + 1
+

2n− 1
2n + 1

On+1.
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Now I make the claim that On = n
2n+1 for all n. We verify this by induction on

n, the number of coins:
For n = 1 we can easily compute O1 = 1

3 , hence the claim is valid for this
value of n. Assume that the claim is true for some m ≥ 1. Then, by our
recurrence relation,

Om+1 =
1

2m + 3
+

2m + 1
2m + 3

Om

Om+1 =
1

2m + 3
+

2m + 1
2m + 3

m

2m + 1
,by inductive hypothesis,

Om+1 =
1

2m + 3
+

m

2m + 3
=

m + 1
2m + 3

,

which has the desired form. This completes the induction and proves the claim.
Thus the desired probability, written as a rational function of n, is On =

n
2n+1 . �

Problem, A-5 2001. Prove that there exist unique positive integers a, n
such that

an+1 − (a + 1)n = 2001.

Solution. Any such a satisfies the polynomial

xn+1 − (x + 1)n − 2001

which has constant coefficient −2002 and leading coefficient 1. Thus, by the
Rational Root Theorem and the fact that a is a positive integer, a is a positive
integer divisor of 2002 = 2× 7× 11× 13.

Also, a 6= 1001, since 1001n ≡ 1 mod 10 for all n, and 1002n is not divisible
by 10 for any n - thus, 1001n − 1002n−1 6≡ 1 mod 10 for all n.

Exactly the same observation shows that a 6= 11, a 6= 91, a 6= 1.
Now a 6= 14, since 14n ≡ 2 mod 6 for odd n, and 14n ≡ 4 mod 6 for even

n > 0. 15n ≡ 3 mod 6 for all n > 0. However, 2001 ≡ 3 mod 6. 2 − 3 6≡ 3
mod 6 and 4− 3 6≡ 3 mod 6.

The situation mod 6 is the same for 26 and for 182, thus a 6= 26, a 6= 182.
a 6= 2, for if 2n+1 − 3n = 2001 for some n > 0, then 2n+1 = 3(3n−1 + 667),

which cannot be since 3 does not divide any power of 2.
a 6= 143, since 143n ≡ 8 mod 9 for odd n and 143n ≡ 1 mod 9 for even n.

144 ≡ 0 mod 9. However, 2001 ≡ 3 mod 9, and this is neither 8 nor 1.
a 6= 154, since n = 1 is not a solution, 154n ≡ 0 mod 8 for all n > 2, and

155n ≡ 5, 1 mod 8 depending on the parity of n. 2001 ≡ 1 mod 8 and neither
(0− 1) nor (0− 5) is congruent to 1 mod 8.

Similarly, considering 2002 and 2003 mod 8 yields a 6= 2002.
a 6= 77, since 77n ≡ 1, 2 mod 3 depending on the parity of n, and 78n ≡ 0

mod 3. However, 2001 ≡ 0 mod 3, and neither 1 nor 2 is congruent to 0 mod 3.
a 6= 22, since 22n ≡ 4 mod 12 for n > 1, and 23n ≡ 1, 11 mod 12 depending

on the parity of n. 2001 ≡ 9 mod 12 and neither (4− 1) nor (4− 11) = (4 + 1)
are congruent to 9 mod 12.

13



a 6= 7, since if n > 0 is even, 7n ≡ 1 mod 12 and 8n−1 ≡ 8 mod 12. If n
is odd, 7n ≡ 7 mod 12 and 8n−1 ≡ 4 mod 12. 2001 ≡ 9 mod 12. In neither
case is 7n+1 − 8n ≡ 9 mod 12.

a 6= 286, since 286n ≡ 1 mod 15 for all n, and 287n ≡ 1, 2, 4, 8 mod 15
depending on the value of n mod 4. 2001 ≡ 6 mod 15, and none of (1 −
1), (1− 2), (1− 4), (1− 8) is congruent to 6 mod 15.

Thus we have accounted for all of the divisors of 2002 except 13. 13n+1 −
14n ≡ 1 mod 10 if and only if n ≡ 2 mod 4. Also, 13n+1 − 14n ≡ 10 mod 11
if and only if n ≡ 2 mod 11. Thus possible solutions are n = 2, 46, 90 · · · . Sure
enough, 133−142 = 2001, and we know that a is unique. To show that no other
n is a solution, we need only note that 1446 > 1347. Of course, this is difficult
to verify directly by hand, but may be proven by many methods of estimation.
One (very easy) way to do it, using the fact that (1 + 1

n )n+1 > e for all n, is:

(
14
13

)46

=

((
1 +

1
13

)14
)3(

14
13

)4

> e3 >

(
5
2

)3

> 13.

Thus the value of n is unique as well, and the single solution in positive integers
is

133 − 142 = 2001.

�

Problem, B-1, 2001. Let n be an even positive integer. Write the numbers
1, 2 · · · , n2 in the squares of an n×n grid so that the kth row, from left to right,
is

(k − 1)n + 1, (k − 1)n + 2, ..., (k − 1)n + n.

Color the squares of the grid so that half of the squares in each row and in
each column are red and the other half are black (a checkerboard coloring is one
possibility.) Prove that for each coloring, the sum of the numbers on the red
squares is equal to the sum of the numbers on the black squares.

Solution. Let a valid coloring be given.
Define αij = −1 if the square in row i, column j is colored black, and

αij = +1 if the square in row i, column j is colored red. Then the problem
stated is equivalent to the following:

Show
n∑

i=1

n∑
j=1

αij((i− 1)n + j) = 0,
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where

n∑
i=1

αij = 0 for any j,

n∑
j=1

αij = 0 for any i.

To show this, we now simply evaluate the sum:

n∑
i=1

n∑
j=1

αij((i− 1)n + j) =
n∑

i=1

n∑
j=1

αijin−
n∑

i=1

n∑
j=1

αijn +
n∑

i=1

n∑
j=1

jαij

= n
n∑

i=1

i
n∑

j=1

αij − n
n∑

i=1

n∑
j=1

αij +
n∑

j=1

j
n∑

i=1

αij

= n
n∑

i=1

(i× 0)− n
n∑

i=1

0 +
n∑

j=1

(j × 0)

= 0,

and we are done. �

Problem, B-3 2001. For any positive integer n let 〈n〉 denote the closest
integer to

√
n. Evaluate

∞∑
n=1

2〈n〉 + 2−〈n〉

2n
.

Solution. Suppose i is an integer such that k2 ≤ i ≤ (k + 1)2, k an integer.
Since (k + 1

2 )2 = k2 + k + 1
4 , if i > k2 + k, then 〈i〉 = k + 1. Otherwise, 〈i〉 = k.

From this we see that the set of all integers i such that 〈i〉 = k is the set of
i satisfying (k − 1)2 + (k − 1) + 1 ≤ i ≤ k2 + k, or k2 − k + 1 ≤ i ≤ k2 + k.

If we take the sum over just those i such that 〈i〉 = k, we get

k2+k∑
i=k2−k+1

2k + 2−k

2i
= (2k + 2−k)

k2+k∑
i=k2−k+1

(
1
2

)i

.

This is a geometric series; evaluating we obtain:

(2k + 2−k)

1−
(

1
2

)k2+k+1

1− 1
2

−
1−

(
1
2

)k2−k+1

1− 1
2


Simplifying we obtain:

2−k2+2k − 2−k2−2k.
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Now the desired sum is:
∞∑

k=1

(2−k2+2k − 2−k2−2k)

How do we evaluate this? All we need do is notice that −k2− 2k = −(k +2)2 +
2(k + 2), and thus the sum telescopes:

(21 − 2−3) + (20 − 2−8) + (2−3 − 2−15) + (2−8 − 2−24) · · ·

...and the only terms remaining in the sum as n → ∞ are 20 + 21 = 3. Thus
the desired sum is 3. �

Problem, A-3 1968. Prove that a list can be made of all the subsets of a
finite set in such a way that

(i.) The empty set is first in the list,
(ii.) each subset occurs exactly once, and
(iii.) each subset in the list is obtained either by adding one element to the

preceding subset or by deleting one element of the preceding subset.
Solution. For a set of n elements, the problem is equivalent to this one: can

we write a list of all strings of length n on the alphabet {0, 1}, where each string
occurs once and only once, the first string is the string of n zeroes, and each
string in the list thereafter may be obtained from the previous one by toggling
exactly one of the characters (that is, changing one 0 to a 1, or one 1 to a 0.)

To show how such a list is constructed, we will induct on n. If n = 1, then
clearly the only viable list is 0, 1. Now suppose a list can be constructed for
n = m,m ≥ 1. Then to construct a list for m + 1 objects do the following:

For the first half of the list, copy down the list for m elements, adding a 0
to the front of each element. For the second half of the list, copy down the list
for m elements backwards, adding a 1 to the front of each element.

Does this list satisfy the requirements? The string of m+1 zeroes is first on
the list. Each possible string appears exactly once. From inductive hypothesis,
each half of the list has the property that each successive element is obtained
by changing exactly one of the characters. The only thing to prove is that this
property holds between the last element of the first half and the first element
of the second half. But clearly it does, since the first element of the second half
is the last element of the first half with the leading 0 changed to a 1. Thus we
have constructed a list which works, and by the induction we can do so for any
n. �

Problem, B-2 1961. Let a, b be given positive real numbers with a < b. If
two points are selected at random from a straight line of length b, what is the
probability that the distance between them is at least a?

Solution. Without loss of generality, we will assume that the straight line
is the interval [0, b]. Suppose the two points p, q are at least distance a apart.

There are three cases: the first, p < a, in which q ∈ [p+a, b]. The total area
in which q can fall is b− p− a.
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The second is when a ≤ p ≤ b−a, in which either q ∈ [0, p−a] or q ∈ [p+a, b].
The total area is b− 2a.

The third case is when b− a < p, in which case q ∈ [0, p− a]. The total area
here is p− a.

Call the event that p is as in the first case C1, in the second case C2, and in
the third case C3. Then the total probability is

P (C1)E(C1) + P (C2)E(C2) + P (C3)E(C3)

where E(Ci) is the expected probability of picking an acceptable q given p in
case i. In terms of interval areas, this expression can be written as

a

b

1
a

∫ a

0

(b− p− a)
b

dp +
b− 2a

b

1
b− 2a

∫ b−a

a

(b− 2a)
b

dp +
a

b

1
a

∫ b

b−a

p− a

b
dp.

which we simplify to

1
b2

∫ a

0

(b− p− a)dp +
b− 2a

b2

∫ b−a

a

dp +
1
b2

∫ b

b−a

(p− a)dp.

which evaluates to

1
b2

(
ab− a2

2
− a2

)
+

(b− 2a)2

b2
+

1
b2

(
b2

2
− ab− (b− a)2

2
+ a(b− a)

)
or, simplified,

(b− a)2

b2
= P (|p− q| ≥ a).

�

Problem, A-5 1956. Given n objects arranged in a row, a subset of these
objects is called unfriendly if no two of its elements is consecutive. Show that

the number of unfriendly subsets each having k elements is
(

n− k + 1
k

)
.

Solution. I will show a one-to-one correspondence between the set of un-
friendly k-subsets and the set of k-subsets of n− k + 1 objects. The result then
follows.

We have the objects labelled 1, 2, · · · , n.
Take a given unfriendly k-subset S. Write it as S = {e0, e1, · · · , ek−2, ek−1},

where the ei are the numbers of the elements in the subset. Order the ei so
that e0 < e1 < e2 < · · · < ek−1. Then, for each ei, i ≥ 1, ei > ei−1 + 1 (since
no objects are consecutive). Each set of ei then uniquely defines a unfriendly
k-subset.

Now define the set S′ = {e0, e1−1, e2−2, · · · , ek−1−(k−1)}. Each successive
element is larger than the previous, and the very largest an element may be is
(n−(k−1)) = (n−k+1). Thus S′ is a k-subset of {1, · · · , n−k+1}. Clearly for
two different unfriendly k-subsets we will obtain two different S′ in this fashion.
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If we are given a k-subset K of {1, · · · , n−k+1}, written as {f0, f1, · · · , fk−1},
with f0 < f1 < f2 < · · · < fk−1, then we can construct the new set K ′ =
{f0, f1 + 1, f2 + 2 · · · fk−1 + (k − 1)}. Clearly this is an unfriendly subset of
{1, 2, 3, · · · , n} with k elements. Taking two different such subsets results in
two different unfriendly subsets.

Thus the one-to-one relationship is demonstrated, and the claim is proven. �

Problem, A-1 1975. Supposing that an integer n is the sum of two triangular
numbers,

n =
a2 + a

2
+

b2 + b

2
,

write 4n + 1 as the sum of two squares, 4n + 1 = x2 + y2, and show how x and
y can be expressed in terms of a and b.

Show that, conversely, if 4n+1 = x2+y2, then n is the sum of two triangular
numbers.

Solution. If n is the sum of two triangular numbers, n = a2+a
2 + b2+b

2 , then
4n + 1 = x2 + y2, where x = a + b + 1 and y = b − a. Verifying this claim is
simply a matter of algebra.

So now I concentrate on the second part. Since 4n + 1 is odd, it follows
that one of x, y is even and one of x, y is odd. So just suppose, without loss of
generality, that x is even and y is odd, and write x = 2l, y = 2m + 1, with l,m
integers. Then, 4n + 1 = 4l2 + 4m2 + 4m + 1 and n = l2 + m2 + m.

Thus it’s all good if I prove that, for any integers l,m, l2 + m2 + m is
the sum of two triangular numbers. Let c = l + m and d = l − m. Then,
l2 + m2 + m = c2+c

2 + d2+d
2 and we are done. �

Sketch work. The proof above is succinct and one hundred percent correct,
but perhaps it is a bit odd how I came up with the relations for a, b, c, d to pull
out of my hat at the appropriate times.

For the first part, for example, I suggested to myself a relationship of the
form x = c1a+c2b+c3, with c1, c2, c3 some constants. Producing three examples
and solving the system of equations was enough to theorize the exact formula
for x and a formula for y quickly followed. My answer to the second part was
produced the same way. Here is the (slightly messy) algebra verifying them:

4n + 1 = 2a2 + 2a + 2b2 + 2b + 1 =

(a2 + 2a + 2ab + b2 + 2b + 1) + (b2 − 2ab + a2) = (a + b + 1)2 + (b− a)2

= x2 + y2, and

(l + m)(l + m + 1)
2

+
(l −m)(l −m + 1)

2
=

1
2
(2l2 + 2m2 + 2m)

= l2 + m2 + m.

�
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Problem, A-5 1969. Let u(t) be a continuous function in the system of
differential equations

dx

dt
= −2y + u(t),

dy

dt
= −2x + u(t).

Show that, regardless of the choice of u(t), the solution of the system which
satisfies x = x0, y = y0 at t = 0 will never pass through (0, 0) unless x0 = y0.
When x0 = y0, show that for any positive value t0 of t, it is possible to choose
u(t) so the solution is at (0, 0) when t = t0.

Solution. Combining the two equations in the system, we have

x′ − y′ = 2(x− y).

So let Q(t) = x(t) − y(t). Then the above becomes Q′(t) = 2Q(t), with the
general solution Q(t) = ce2t, with c a constant. Using the initial conditions,
c = x0− y0. Notice that unless c = x0− y0 = 0, Q(t) is never 0 for any t. Thus,
unless x0 = y0, x(t) 6= y(t) for all t, and the solution will never pass through
the point (0, 0).

That finishes the first part of the problem. Now, to tackle the second.
If x0 = y0, then Q(t) = 0 for all t and thus x(t) = y(t). Then, the first

equation in the system becomes

dx

dt
= −2x + u(t).

Now, we are given t0 6= 0. Pick

u(t) = 2x0 −
x0

t0
(2t + 1).

This is a continuous u for t0 6= 0. In this case, the solution for x(t) is

x(t) = (1− t

t0
)x0.

At t = 0, x(t) = x0 = y0 = y(t), and at t = t0, x(t) = y(t) = 0. Thus we have
shown the existence of an appropriate u(t) and are done. �

Problem, A-6 1973. Prove that it is impossible for seven distinct straight
lines to be situated in the Euclidean plane so as to have at least six points where
exactly three of these lines intersect and at least four points where exactly two
of these lines intersect.

Solution 1. This is the pretty solution. Any two nonparallel lines in the

Euclidean plane intersect in exactly one point. Thus there are at most
(

7
2

)
=

21 points of intersection.

In a place where exactly two lines intersect, there are
(

2
2

)
= 1 of these

points used up.
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In a place where exactly three lines intersect, there are
(

3
2

)
= 3 of these

points used up.
So then, to have six three-intersection points and four two-intersection points,

we require 3× 6 + 4× 1 = 22 intersection points. However, we have only 21. �
Solution 2. This is a longer and perhaps less elegant solution, but does

show how one can hammer at a problem with the Pigeonhole Principle until it
roughly resembles something trivial...

1. We refer to the lines as L1, L2, · · ·L7.
2. Two nonparallel lines in the plane intersect in exactly one point.
3. A corollary to (2): if Li and Lj meet in a 2-intersection, they do not

meet in a 3-intersection, and vice versa. Neither can a pair of lines meet in two
different 3-intersections.

4. Also from (3), if a line is in 3 different 3-intersections, then it intersects
all 6 of the other lines.

5. No line can appear in 4 different 3-intersections, since then one other line
appears with it in 2 3-intersections, violating (3).

6. There are 6 3-intersections, involving 18 lines. There are 7 different lines,
thus 4 lines appear in at least 3 3-intersections each. By (5), these 4 lines appear
in exactly 3 3-intersections.

7. Call these four lines L1, L2, L3, L4. Each of these lines intersects every
other line, by (4).

8. From (7), that means that all four of our 2-intersections must involve lines
chosen from L5, L6, L7. But only three possible choices exist: L5L6, L5L7, L6L7.

Therefore the seven solution lines do not exist. �

Problem, A-4 1998. Define the sequence an as follows: a0 = 0, a1 = 1,
and an+2 is obtained by writing the digits of an+1 immediately followed by the
digits of an. When is an divisible by 11?

Solution. First, it is clear that the number of digits in an is Fn, the nth
Fibonnaci number. The number Fn is even iff n is divisible by 3.

Remember the divisibility test for 11: a base 10 integer number is divisible
by 11 iff, when one begins with the first digit of the number, subtracts from it
the second digit, adds to that the third digit, subtracts the fourth, and so on,
once finished, obtains a multiple of 11 as the sum. For example 1331 is divisible
by 11 since 1− 3 + 3− 1 = 0.

Let bn be the count obtained in this fashion for an (it is actually 11 minus
the number’s remainder modulus 11.) Thus b0 = 0, b1 = 1, b2 = 1, b3 = 2 and
so on.

Clearly, either bn+2 = bn+1 + bn or bn+2 = bn+1− bn, depending on whether
there are an even or odd number of digits in an+1. If the number is even, it is
the former expression, and if the number is odd, it is the latter expression. This
only depends on the remainder of n modulus 3.

From this we can see that if we ever have bn = bn−3k and bn−1 = bn−1−3k,
we have bj = bj−3k for all following j.
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Simple computation shows that b7 = 0 = b1 and b8 = 1 = b2. Hence we
begin to cycle forever after that. No ni with i from 1 to 6 is 0. Thus, an is
divisible by 11 if and only if n = 6k + 1 for some integer k. �

Problem, B-6 1998. Show that for any integers a, b, c, we can find a positive
integer n such that n3 + an2 + bn + c is not a perfect square.

Solution. Recall that a perfect square q is always congruent to 0 or 1
mod 4. Thus it is sufficient if we produce an n such that the above expression
is not congruent to either 0 or 1 mod 4.

If a + b + c ≡ 1, 2 mod 4, set n = 1. Then n3 + an2 + bn + c ≡ 1 + a + b + c
mod 4 and we are done.

Otherwise, if c ≡ 2, 3 mod 4, set n = 4. Then n3 + an2 + bn + c ≡ c mod 4
and we are done.

Otherwise, if b ≡ 1, 3 mod 4, set n = 2. Then n3 + an2 + bn + c ≡ 2b + c
mod 4. Since c ≡ 0, 1 mod 4, we are done.

Now, if none of the above work, then b ≡ 0, 2 mod 4, c ≡ 0, 1 mod 4, and
a + b + c ≡ 0, 3 mod 4. Set n = 3. Then n3 + an2 + bn + c ≡ 3 + 2b + a + b + c
mod 4. This is congruent to either 2 or 3 mod 4. We are done! �
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